Earth May Have Had A Ring Like Saturn, Hidden Craters Reveal Evidence

The best explanation for all this evidence is that a large asteroid broke up during a close encounter with Earth.

Advertisement
Read Time: 4 mins
Evidence suggests the existence of a ring around Earth, forming around 466 million years ago.

The rings of Saturn are some of the most famous and spectacular objects in the Solar System. Earth may once have had something similar.

In a paper published last week in Earth & Planetary Science Letters, my colleagues and I present evidence that Earth may have had a ring.

The existence of such a ring, forming around 466 million years ago and persisting for a few tens of millions of years, could explain several puzzles in our planet's past.

The case for a ringed Earth

So it's extremely unlikely that all 21 craters from this period would form close to the equator if they were unrelated to one another. We would expect to see many other craters at higher latitudes as well.

We think the best explanation for all this evidence is that a large asteroid broke up during a close encounter with Earth. Over several tens of millions of years, the asteroid's debris rained down onto Earth, creating the pattern of craters, sediments and tsunamis we describe above.

How rings form

You may know that Saturn isn't the only planet with rings. Jupiter, Neptune and Uranus have less obvious rings, too. Some scientists have even suggested that Phobos and Deimos, the small moons of Mars, may be remnants of an ancient ring.

So we know a lot about how rings form. Here's how it works.

When a small body (like an asteroid) passes close to a large body (like a planet), it gets stretched by gravity. If it gets close enough (inside a distance called the Roche limit), the small body will break apart into lots of tiny pieces and a small number of bigger pieces.

All those fragments will be jostled around and gradually evolve into a debris ring orbiting the equator of the larger body. Over time, the material in the ring will fall down to the larger body, where the larger pieces will form impact craters. These craters will be located close to the equator.

Advertisement

So if Earth destroyed and captured a passing asteroid around 466 million years ago, it would explain the anomalous locations of the impact craters, the meteorite debris in sedimentary rocks, craters and tsunamis, and the meteorites' relatively brief exposure to space radiation.

Advertisement

A giant sunshade?

Back then, the continents were in different positions due to continental drift. Much of North America, Europe and Australia were close to the equator, whereas Africa and South America were at higher southern latitudes.

Advertisement

The ring would have been around the equator. And since Earth's axis is tilted relative to its orbit around the Sun, the ring would have shaded parts of Earth's surface.

Advertisement

This shading in turn might have caused global cooling, as less sunlight reached the planet's surface.

This brings us to another interesting puzzle. Around 465 million years ago, our planet began cooling dramatically. By 445 million years ago it was in the Hirnantian Ice Age, the coldest period in the past half a billion years.

Was a ring-shading Earth responsible for this extreme cooling? The next step in our scientific sleuthing is to make mathematical models of how asteroids break up and disperse, and how the resulting ring evolves over time. This will set the scene for climate modelling that explores how much cooling could be imposed by such a ring.

Andrew Tomkins, Geologist, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

(Except for the headline, this story has not been edited by NDTV staff and is published from a syndicated feed.)

Featured Video Of The Day
UGC Draft | Southern States Vs Centre: Over Higher Education
Topics mentioned in this article