The Sun, which governs the weather, ocean currents, seasons, and climate as well as permitting plant life through photosynthesis, has a significant impact on planet earth. The sun's origins and demise have long attracted the attention of scientists.
According to the National Geographic, about 4.5 billion years ago, the sun began to take shape from a molecular cloud that was mainly composed of hydrogen and helium. A nearby supernova emitted a shockwave, which came in contact with the molecular cloud and energized it. The sun is about 150 million kilometers (93 million miles) from Earth.
According to ScienceAlert, "In about 5 billion years, the Sun is due to turn into a red giant. The core of the star will shrink, but its outer layers will expand out to the orbit of Mars, engulfing our planet in the process. If it's even still there."
A 2018 study by the University of Manchester used computer modeling to determine that, like 90 percent of other stars, our Sun is most likely to shrink down from a red giant to become a white dwarf and then end as a planetary nebula.
"When a star dies it ejects a mass of gas and dust - known as its envelope - into space. The envelope can be as much as half the star's mass. This reveals the star's core, which by this point in the star's life is running out of fuel, eventually turning off and before finally dying," explained astrophysicist Albert Zijlstra from the University of Manchester in the UK, one of the authors of the paper.
"It is only then the hot core makes the ejected envelope shine brightly for around 10,000 years - a brief period in astronomy. This is what makes the planetary nebula visible. Some are so bright that they can be seen from extremely large distances measuring tens of millions of light years, where the star itself would have been much too faint to see."