Representational image
London:
Researchers have developed an artificial heart that pumps human urine to power future generations of robots that can function completely on their own by collecting waste and converting it into electricity.
Modelled on the human heart, the artificial device incorporates smart materials called shape memory alloys and could be used to deliver human urine to power future generations of EcoBot.
Researchers based at the Bristol Robotics Laboratory - a joint venture between The University of the West of England and the University of Bristol - have created four generations of EcoBots in the past 10 years.
Each EcoBot is powered by electricity-generating microbial fuel cells that employ live microorganisms to digest waste organic matter and generate low-level power.
In the future, it is believed that EcoBots could be deployed as monitors in areas where there may be dangerous levels of pollution, or indeed dangerous predators, so that little human maintenance is needed.
It has already been shown that these types of robots can generate their energy from rotten fruit and vegetables, dead flies, waste water, sludge and human urine.
At the moment conventional motor pumps are used to deliver liquid feedstock to the EcoBot's fuel cells; however, they are prone to mechanical failure and blockages.
The new device, which has an internal volume of 24.5 ml, works in a similar fashion to the human heart by compressing the body of the pump and forcing the liquid out.
This was achieved using 'artificial muscles' made from shape memory alloys - a group of smart materials that are able to 'remember' their original shape.
When heated with an electric current, the artificial muscles compressed a soft region in the centre of the heart-pump causing the fluid to be ejected through an outlet and pumped to a height that would be sufficient to deliver fluid to an EcoBot's fuel cells.
The artificial muscles then cooled and returned to their original shape when the electric current was removed, causing the heart-pump to relax and prompting fluid from a reservoir to be drawn in for the next cycle.
A stack of 24 microbial fuel cells fed on urine were able to generate enough electricity to charge a capacitor. The energy stored in the capacitor was then used to start another cycle of pumping from the artificial heart.
"The artificial heartbeat is mechanically simpler than a conventional electric motor-driven pump by virtue of the fact that it employs artificial muscle fibres to create the pumping action, rather than an electric motor, which is by comparison a more complex mechanical assembly," said lead author of the study Peter Walters, from the Centre for Fine Print Research.
Modelled on the human heart, the artificial device incorporates smart materials called shape memory alloys and could be used to deliver human urine to power future generations of EcoBot.
Researchers based at the Bristol Robotics Laboratory - a joint venture between The University of the West of England and the University of Bristol - have created four generations of EcoBots in the past 10 years.
Each EcoBot is powered by electricity-generating microbial fuel cells that employ live microorganisms to digest waste organic matter and generate low-level power.
In the future, it is believed that EcoBots could be deployed as monitors in areas where there may be dangerous levels of pollution, or indeed dangerous predators, so that little human maintenance is needed.
It has already been shown that these types of robots can generate their energy from rotten fruit and vegetables, dead flies, waste water, sludge and human urine.
At the moment conventional motor pumps are used to deliver liquid feedstock to the EcoBot's fuel cells; however, they are prone to mechanical failure and blockages.
The new device, which has an internal volume of 24.5 ml, works in a similar fashion to the human heart by compressing the body of the pump and forcing the liquid out.
This was achieved using 'artificial muscles' made from shape memory alloys - a group of smart materials that are able to 'remember' their original shape.
When heated with an electric current, the artificial muscles compressed a soft region in the centre of the heart-pump causing the fluid to be ejected through an outlet and pumped to a height that would be sufficient to deliver fluid to an EcoBot's fuel cells.
The artificial muscles then cooled and returned to their original shape when the electric current was removed, causing the heart-pump to relax and prompting fluid from a reservoir to be drawn in for the next cycle.
A stack of 24 microbial fuel cells fed on urine were able to generate enough electricity to charge a capacitor. The energy stored in the capacitor was then used to start another cycle of pumping from the artificial heart.
"The artificial heartbeat is mechanically simpler than a conventional electric motor-driven pump by virtue of the fact that it employs artificial muscle fibres to create the pumping action, rather than an electric motor, which is by comparison a more complex mechanical assembly," said lead author of the study Peter Walters, from the Centre for Fine Print Research.
Track Latest News Live on NDTV.com and get news updates from India and around the world